extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊S3).1C23 = S32⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).1C2^3 | 288,868 |
(C2×C3⋊S3).2C23 = C4.4S3≀C2 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).2C2^3 | 288,869 |
(C2×C3⋊S3).3C23 = C32⋊C4⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).3C2^3 | 288,870 |
(C2×C3⋊S3).4C23 = C4×S3≀C2 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).4C2^3 | 288,877 |
(C2×C3⋊S3).5C23 = S32⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).5C2^3 | 288,878 |
(C2×C3⋊S3).6C23 = C4⋊S3≀C2 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).6C2^3 | 288,879 |
(C2×C3⋊S3).7C23 = C2×S32⋊C4 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).7C2^3 | 288,880 |
(C2×C3⋊S3).8C23 = C62.9D4 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).8C2^3 | 288,881 |
(C2×C3⋊S3).9C23 = C2×C3⋊S3.Q8 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).9C2^3 | 288,882 |
(C2×C3⋊S3).10C23 = D6≀C2 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 12 | 4+ | (C2xC3:S3).10C2^3 | 288,889 |
(C2×C3⋊S3).11C23 = C62⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).11C2^3 | 288,890 |
(C2×C3⋊S3).12C23 = C4.3PSU3(𝔽2) | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).12C2^3 | 288,891 |
(C2×C3⋊S3).13C23 = C4×PSU3(𝔽2) | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 36 | 8 | (C2xC3:S3).13C2^3 | 288,892 |
(C2×C3⋊S3).14C23 = C4⋊PSU3(𝔽2) | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 36 | 8 | (C2xC3:S3).14C2^3 | 288,893 |
(C2×C3⋊S3).15C23 = C2×C2.PSU3(𝔽2) | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).15C2^3 | 288,894 |
(C2×C3⋊S3).16C23 = C62⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).16C2^3 | 288,895 |
(C2×C3⋊S3).17C23 = D12.33D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).17C2^3 | 288,945 |
(C2×C3⋊S3).18C23 = C2×D6.6D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).18C2^3 | 288,949 |
(C2×C3⋊S3).19C23 = S3×C4○D12 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).19C2^3 | 288,953 |
(C2×C3⋊S3).20C23 = D12⋊24D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).20C2^3 | 288,955 |
(C2×C3⋊S3).21C23 = D12⋊27D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4+ | (C2xC3:S3).21C2^3 | 288,956 |
(C2×C3⋊S3).22C23 = Dic6.24D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).22C2^3 | 288,957 |
(C2×C3⋊S3).23C23 = S3×D4⋊2S3 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).23C2^3 | 288,959 |
(C2×C3⋊S3).24C23 = Dic6⋊12D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).24C2^3 | 288,960 |
(C2×C3⋊S3).25C23 = D12⋊12D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).25C2^3 | 288,961 |
(C2×C3⋊S3).26C23 = D12⋊13D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).26C2^3 | 288,962 |
(C2×C3⋊S3).27C23 = Dic6.26D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).27C2^3 | 288,964 |
(C2×C3⋊S3).28C23 = S3×Q8⋊3S3 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).28C2^3 | 288,966 |
(C2×C3⋊S3).29C23 = D12⋊16D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8+ | (C2xC3:S3).29C2^3 | 288,968 |
(C2×C3⋊S3).30C23 = C2×D6.3D6 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).30C2^3 | 288,970 |
(C2×C3⋊S3).31C23 = C32⋊2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).31C2^3 | 288,978 |
(C2×C3⋊S3).32C23 = C22×S3≀C2 | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).32C2^3 | 288,1031 |
(C2×C3⋊S3).33C23 = C22×PSU3(𝔽2) | φ: C23/C2 → C22 ⊆ Out C2×C3⋊S3 | 36 | | (C2xC3:S3).33C2^3 | 288,1032 |
(C2×C3⋊S3).34C23 = C2×C4×C32⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).34C2^3 | 288,932 |
(C2×C3⋊S3).35C23 = C2×C4⋊(C32⋊C4) | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).35C2^3 | 288,933 |
(C2×C3⋊S3).36C23 = (C6×C12)⋊5C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).36C2^3 | 288,934 |
(C2×C3⋊S3).37C23 = D4×C32⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).37C2^3 | 288,936 |
(C2×C3⋊S3).38C23 = Q8×C32⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).38C2^3 | 288,938 |
(C2×C3⋊S3).39C23 = C2×C62⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | | (C2xC3:S3).39C2^3 | 288,941 |
(C2×C3⋊S3).40C23 = C2×D12⋊S3 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).40C2^3 | 288,944 |
(C2×C3⋊S3).41C23 = C2×Dic3.D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).41C2^3 | 288,947 |
(C2×C3⋊S3).42C23 = C2×D6.D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).42C2^3 | 288,948 |
(C2×C3⋊S3).43C23 = S32×C2×C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).43C2^3 | 288,950 |
(C2×C3⋊S3).44C23 = C2×D6⋊D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).44C2^3 | 288,952 |
(C2×C3⋊S3).45C23 = D12⋊23D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).45C2^3 | 288,954 |
(C2×C3⋊S3).46C23 = D12.25D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).46C2^3 | 288,963 |
(C2×C3⋊S3).47C23 = S32×Q8 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).47C2^3 | 288,965 |
(C2×C3⋊S3).48C23 = D12⋊15D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).48C2^3 | 288,967 |
(C2×C3⋊S3).49C23 = C22×C6.D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).49C2^3 | 288,972 |
(C2×C3⋊S3).50C23 = C2×C12.59D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).50C2^3 | 288,1006 |
(C2×C3⋊S3).51C23 = C2×C12.D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).51C2^3 | 288,1008 |
(C2×C3⋊S3).52C23 = C32⋊82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).52C2^3 | 288,1009 |
(C2×C3⋊S3).53C23 = C2×C12.26D6 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).53C2^3 | 288,1011 |
(C2×C3⋊S3).54C23 = C32⋊72- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).54C2^3 | 288,1012 |
(C2×C3⋊S3).55C23 = C4○D4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).55C2^3 | 288,1013 |
(C2×C3⋊S3).56C23 = C62.154C23 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).56C2^3 | 288,1014 |
(C2×C3⋊S3).57C23 = C32⋊92- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).57C2^3 | 288,1015 |
(C2×C3⋊S3).58C23 = C23×C32⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).58C2^3 | 288,1039 |
(C2×C3⋊S3).59C23 = C22×C4×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:S3).59C2^3 | 288,1004 |
(C2×C3⋊S3).60C23 = C2×Q8×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:S3).60C2^3 | 288,1010 |